

ENGINEERING DEPARTMENT TECHNICAL REPORT

TR-RE-CCSD-FO-1115-3

July 6, 1967

SATURN IB PROGRAM

TEST REPORT FOR

ANGLE VALVE, 3/8-INCH

James, Pond, and Clark Inc., Part Number BR949T1-6BB(T9)

NASA Drawing Number 75M09618 PAV-2

FACILITY ORM 602	N67-39988	
	(ACCESSION NUMBER)	(THRU)
ë	78	\mathcal{A}
7	(PAGES)	(CODE)
FAC	CK-89718	/5
	(NASA CR ORTMX OR AD NUMBER)	(CATEGORY)

TEST REPORT

FOR

ANGLE VALVE, 3/8-INCH

James, Pond and Clark, Inc., Part Number BR949T1-6BB(T9)

NASA Drawing Number 75M09618 PAV-2

ABSTRACT

This report presents the results of tests performed on one specimen of Angle Valve 75M09618 PAV-2. The following tests were performed:

- 1. Receiving Inspection
- 2. Proof Pressure
- 3. Functional
- 4. Flow
- 5. Surge

- 6. Low Temperature
- 7. High Temperature
- 8. Cycle
- 9. Sand and Dust
- 10. Salt Fog
- 11. Burst

The specimen's performance was in accordance with the specification requirements of NASA drawing number 75M09618 PAV-2 except during the cycle test. After 143 cycles the torque required to operate the valve exceeded the 10 foot-pounds seating and the 5 foot-pounds running torque. Disassembly of the valve revealed damaged threads on the valve stem and failure of the packing gland. The valve was sent to the vendor for reworking and after return to CCSD, the specimen was retested. Results of the second cycle test were satisfactory.

TEST REPORT

FOR

ANGLE VALVE, 3/8-INCH

James, Pond and Clark, Inc., Part Number BR949T1-6BB(T9)

NASA Drawing Number 75M09618 PAV-2

July 6, 1967

FOREWORD

The tests reported herein were conducted for the John E. Kennedy Space Center by Chrysler Corporation Space Division (CCSD), New Orleans, Louisiana. This document was prepared by CCSD under Contract NAS 8-4016, Part VII, CWO 271620.

TABLE OF CONTENTS

Section		Page
I	INTRODUCTION	1-1
II	RECEIVING INSPECTION	2-1
III	PROOF PRESSURE TEST	3-1
IV	FUNCTIONALTEST	4-1
V	FLOW TEST	5-1
VI	SURGETEST	6-1
VII	LOW TEMPERATURE TEST	7-1
T IIV	HIGH TEMPERATURE TEST	8–1
IX	CYCLE TEST	9-1
X	SAND AND DUST TEST	10-1
XI	SALTFOGTEST	11-1
XII	BURST TEST	12-1

APPENDIX I LABORATORY SAND AND DUST ENVIRONMENT TEST REPORT

LIST OF ILLUSTRATIONS

Figure		<u>Page</u>
FRONTISPIEC	Е	
3-1	PROOF PRESSURE AND BURST TESTS SCHEMATIC	. 3-5
3–2	PROOF PRESSURE AND BURST TEST SETUP	3-6
4-1	FUNCTIONAL TEST SCHEMATIC	. 4-7
4-2	FUNCTIONAL TEST SETUP	4-8
5-1	HOW VERSUS DIFFERENTIAL PRESSURE	5-7
5–2	FLOW TEST SCHEMATIC	5-8
5–3	FLOW TEST SETUP	5 – 9
6-1	TYPICAL SURGE WAVEFORM	6-7
6–2	SURGE AND LIFE CYCLE TEST SCHEMATIC	• 6 - 8
6-3	SURGE AND LIFE CYCLE TEST SETUP	6-9
7-1	LOW AND HIGH TEMPERATURE TEST SETUP	7-4
7-2	IOW AND HIGH TEMPERATURE TEST EQUIPMENT	7-5
9-1	SPECIMEN FAILURE AFTER 143 CYCLES	9-10
11-1	SPECIMEN FOLLOWING 240 HOURS OF SALT FOG EXPOSURE . • •	11-4

j

LIST OF TABLES

Table	<u>Page</u>
2-1	RECEIVING INSPECTION TEST DATA.
2- 2	RECEIVING INSPECTION TEST EQUIPMENT LIST 2-2
3-1	PROOF PRESSURE AND BURST TESTS EQUIPMENT LIST
3-2	PROOF <i>Pressure</i> test data
4-1	FUNCTIONAL TEST EQUIPMENT LIST
4-2	INITIAL FUNCTIONAL TEST DATA
5-1	FLOW TEST EQUIPMENT LIST
5-2	FUNCTIONAL TEST PRIOR TO FLOW TEST (72 HOURS LAPSE TIME)
5-3	FLOW TEST DATA
6-1	SURGE AND CYCLE TEST EQUIPMENT LIST \blacksquare , \blacksquare \blacksquare \blacksquare 6-3
6–2	FUNCTIONAL TEST PRIOR TO SURGE TEST (72 HOURS LAPSE TIME)
6-3	FUNCTIONAL TEST FOLLOWING THE SURGE TEST 6-6
7-1	FUNCTIONAL TEST AT 5°F,
7-2	FUNCTIONAL TEST AT AMBIENT CONDITIONS
8-1	FUNCTIONAL TEST AT +160°F 8-2
8-2	FUNCTIONAL TEST AT AMBIENT CONDITIONS
9-1	FUNCTIONAL TEST AFTER 50 CYCLES 9-3
9-2	FUNCTIONAL TEST AFTER 100 CYCLES
9-3	FUNCTIONAL TEST AFTER VALVE WAS REBUILT 9-5
9-4	FUNCTIONAL TEST AFTER 50 CYCLES (REBUILT VALVE) 9-6
9-5	FUNCTIONAL TEST AFTER 100 CYCLES (REBUILT VALVE) 9-7
9 - 6	FUNCTIONAL TEST AFTER 500 CYCLES (REBUILT VALVE) 9-8
9 – 7	FUNCTIONAL TEST AFTER 1000 CYCLES (REBUILT VALVE) 9-9

LIST OF TABLES (CONTINUED)

Table		Page
10-1	FUNCTIONAL TEST FOLLOWING THE SAND AND DUST TEST	. 10-3
11-1	FUNCTIONAL TEST FOLLOWING THE SALT FOG TEST	- 11-3
12-1	BURST TEST DATA.	12-3

J

Angle Valve, 3/8-Inch, 75M09618 PAV-2

vii

CHECK SHEET

FOR ANGLE VALVE, 3/8-INCH

MANUFACTURER: James, Pond and Clark, Inc. MANUFACTURER'S PART NUMBER: BR949T1-6BB(T9)

NASA PART NUMBER: 75M09618 PAV-2

TESTING AGENCY: Chrysler Corporation Space Division, New Orleans, La.

AUTHORIZING AGENCY: NASA KSC

I. FUNCTIONAL REQUIREMENTS

OPERATING MEDIUM: A. Nitrogen or helium

OPERATING PRESSURE: 6000 psig

C. Bubble tight below 6000 psig LEAKAGE: Max. breakaway: '10 ft-1b with D. TORQUE:

6000 psig

Max. running: 5 ft-1b

Max. seating: 10 ft-lb against

6000 psig 9000 psig

E. PROF PRESSURE: F. HOW Cv: Determine

G. BURST PRESSURE: 24,000 psig, minimum

II. CONSTRUCTION

BODY MATIBIAL: 316 stainless steel,

passivated per 5.4.1 of

MIL-STD-171

B. SEAT MATERIAL: **KEL-F** or 316 stainless steel

C. BACK-UP RING MATERIAL: KEL-F D. CONTROL KNOB MATERIAL: Aluminum E. PACKING MATERIAL: Teflon F. INLET PORT: 3/8 inch

SECTIONAL DIMENSIONS: Drawing 75M09618 PAV-2

III. ENVIRONMENTAL CHARACTERISTICS-MANUFACTURER'S SPECIFICATIONS

OPERATING TEMPERATURE: +5 to 160°F

*

IV. LOCATION AND USE

Pneumatics system of the ground support equipment, Launch Complex 34.

TEST SUMMARY

ANGLE VALVE, 3/8-INCH

75M09618 PAV-2

Environment	Units	Operational Boundary	Test Ob jective	Test Results	Remarks
Receiving Inspection	1	NASA Drawing Number 75M- 09618 PAV-2	Visual and dimen- sional examination for compliance	Satis- factory	No visual de- viations from the specifica- tion or good workmanship
Proof Pres- sure	1	9,000. psig for five minutes	Check for leakage or distortion	Sat is- factory	No leakage or distortion
Functional Test	1		Check for leakage and establish opening, closing and running torque values	Satis- factory	No leakage
Flow Test	1	Cv to be de- termined	Determine Cv for the valve	Satis- factory	#werage Cv of 0.425
Surge Test	1		Determine if speci- men's operation is impaired by surge	Satis- factory	No leakage or apparent distortion
Low Tempera- ture Test	1	+5 (+0,-4)°F	Determine if the environments cause degradation or de-	Satis- factory	No leakage or apparent distortion
High Temper- ature Test	1	+160 (+4,-0)°F	formation	Satis- factory	distortion
Cycle Test	1	Operating the specimen for 1000 complete cycles with 6000 psig on inlet to valve	Determine if the environment causes degradation or deformation due to accumulative wear	Uwsatis - factory Excessive leakage after 143 cycles	were damaged.
Sand and Dust Test	1		Determine if sand F particles can cause malfunction	Satis- factory	Valve did not malfunction
Salt Spray	1	240 (<u>+</u> 2) hours	Determine if speci- men operation is im- paired by salt en- virnnment	Satis- factory	Valve function es satisfactorily
Burst	1		Check for structural damage and leakage	Satis- factory	Valve did not rupture at 24,000 psig

SECTION I

INTRODUCTION

1.1 <u>SCOPE</u>

- This report describes the testing of the 3/8-inch, manually operated Angle Valve 75M09618 PAV-2. Tests included were those necessary to determine whether the valve will satisfy the operational and environmental requirements of the John F. Kennedy Space Center. A summary of the test results is presented on page ix.
- 1.1.2 One specimen was tested.

1.2 ITEM DESCRIPTION

1.2.1 Angle Valve 75M09618 PAV-2 has a 3/8-inch nominal size inlet port. It has a design perating pressure of 6000 psig and is rated for use with nitrogen and helium.

1.3 <u>APPLICABLE DOCUMENTS</u>

The following documents contain the test requirements for Angle Valve 75M09618 PAV-2.

- a. KSC-STD-164(D), Standard Environmental Test Methods for Ground Support Equipment Installations at Cape Kennedy.
- b. Component Specification 75M09618 PAV-2
- c. Cleanliness Standard AloM10671
- d. Test Plan CCSD-F0-1115-1F
- e. Technical Procedure TP-RE-CCSD-FO-1115-2F

SECTION II

RECEIVING INSPECTION

2.1 REQUIREMENTS

The specimen shall be visually and dimensionally inspected for conformance with NASA Specification 75M09618 PAV-2 prior to the start of the tests. The specimen shall also be inspected for poor workmanship and manufacturing defects.

2.2 TEST PROCEDURE

The specimen was checked to determine compliance with NASA Specification 75M09618 PAV-2 and applicable vendor drawings to the extent possible without disassembling the test specimen. At the same time the test specimen was also inspected for poor workmanship and manufacturing defects.

2.3 TEST RESULTS

The specimen complied with drawing 75M09618 PAV-2. No evidence of poor workmanship or manufacturing defects was observed.

2.4 <u>TEST_DATA</u>

The data presented in tables 2-1 and 2-2 were recorded during the inspection.

Table 2-1. Receiving Inspection Test Data

Item	Specified	Actual
Physical description	Angle Valve, 3/8-inch	Angle Valve, 3/8-inch
Body material	Stainless steel	Stainless steel
Seat material	KEL-F	KEL-F
Handwheel material	Aluminum	Aluminum
Handwheel diameter	2.18 in.	2 . 15 in.
Overall length (open)	4.0 in. (max.)	3.75 in.
Overall length (closed)	3.52 in. (max.)	3.49 in.
Body housing dimensions	1.0 x 1.0 x 1.34 in.	1.0 x 1.0 x 1.32 in.
Inlet and outlet I.D.	0.5625 in.	0.562 in.

Table 2-2. Receiving Inspection Test Equipment List

Item No.	Item	Manufacturer	Model/ Part No.	Serial No∎	Cal. Date
1	Steel Scale	Browne & Sharpe	300	NASA 101- 1013	7–23–64
2	1-in. micro- meter	Craftsman	N/A	NASA 106- 1137-P	4-20-67
3	4-in. inside caliper	Union Tool	N/A	n/A	

. 3

SECTION III

PROOF PRESSURE TEST

3.1	TEST REQUIREMENTS
3.1.1	The test specimen shall be subjected to a proof pressure of 9000 psig.
3.1.2	The pressure shall be simultaneously applied to the inlet and outlet ports, with the valve in the open position, and shall be maintained for 5 minutes.
3.1.3	The specimen shall be inspected for leakage and distortion.
3.2	TEST PROCEDURE
3.2.1	The test specimen was installed in the test setup as shown in figures 3-1 and 3-2 utilizing the equipment listed in table 3-1.
3.2.2	Regulator 21 was adjusted for zero outlet pressure.
3.2.3	The test specimen and hand valves 6, 7, 8, 9, 10 and 11 were opened and the system was filled with water. The fittings at the specimen and gage 3 were loosened to bleed all air from the system. The fittings were then tightened.
3.2.4	Hand valves 6, 8, 9 and 11 were closed.
3.2.5	Hand valve 5 was opened and 3000 psig GN_2 was monitored on gage 4 .
3.2.6	Regulator 21 was adjusted until a pressure of 75 psig was indicated on gage 15.
3.2.7	Switch 17 was then closed. Solenoid valve 18 was opened and pump 19 started.
3.2.8	The pump continued to operate until a pressure of 9000 psig was indicated on gage 3. Switch 17 was then opened to stop pumping.
3.2.9	The 9000 psig pressure was maintained for 5 minutes, and the specimen was checked for leakage.
3.2.10	Hand valves 8 and 11 were opened to vent the system, and the specimen was then checked for distortion.

3.3 <u>TEST RESULTS</u>

The specimen did not leak and there was no evidence of distortion.

3.4 TEST DATA

The test data are presented in table 3-2.

Table 3-1. Proof Pressure and Burst Test Equipment List

Item No.	Item	Manufacturer	Model/ Part No.	Serial No.	Remarks
1	Test Specimen		BR949Tl- 6BB(T 9)	60100412	Angle Valve 3/8-in.
2	Water Supply	NOPSI	NA	NA	Táp water
3	Hydrostatic Pressure Gage	Æ tra	NA		Range: O-to 100,000-psig +2.0% FS Cal. date 11/2/66
4	Burst Chamber	CCSD	NA	201344	3 ft x 3 ft x 3ft
5	Hand Valve	.Aminc o	50011A	NA	1/4-in
6	Hand Valve	Aminco	50011A	NA	1/4-in.
1	Hand Valve	Aminco	50011A	NA	l/4-in.
8	Hand Valve	Aminco	50011A	NA	1/4-in.
9	Hand Valve	Aminco	50011A	NA	l/4-in.
10	Hand Valve	Amine o	50011A	INA	1/4-in.
11	Hand Valve	Amine o	50011A	ina	1/4-in.
12	Water Reservoir	CCZD	NA	INA	2-gal.
13	Pneumatic Filter	Bendix Corp.	1731260	:NA	2-micron
14	Pneumatic Gage	Ashcroft	10575	iNA	0-to 5000-psig + 2% FS
15	Pneumatic Gage	usg	8990	INA	0-to 300-psig + 2% FS
16	Power Supply	CCZD	NA	1NA	28 vdc
17	Switch	Cutler-Hammer	NA	INA	SPST
18	2-Way Solenoid Valve	Marotta Valve Corp.	207803	NA	Normally closed
19	Hydrostatic Pump	Sprague Engineer- ing Corp.	NA	300 -16- 64	Air operated, maximum pressure 50,000 psig

Table 3-1. Proof Pressure and Burst Test Equipment List (Continued)

Item No.	Item	Manufacturer	Model/ Part No,	Serial No.	Remarks
20	Check Valve	Aminco	44-6305	NA	1/4-in.
21	Regulator	Marotta Valve Corp.	NA	N/A	3000-psig inlet 0-to 200-psig outlet
22	Pneumatic Pres- sure Source	Air Products	NA	NA	3000-psig

Table 3-2. Proof Pressure Test Data

Pressure	9000 psig/5 minutes
Leakage	Zero
Distortion	Zero

Note: All lines 1/4 inch.
Refer to table 3-1 for item identification.
All dash lines represent electrical circuitry.

Figure 3-1. Proof Pressure and Burst Test Schematic

3-6

SECTION IV

FUNCTIONAL TEST

4.1	TEST REQUIREMENTS
4.1.1	The test specimen shall be inspected for leakage with the outlet port of the specimen pressurized to 6000 psig, specimen closed, and the inlet port vented. Leakage shall be recorded.
4.1.2	The test specimen shall be inspected for leakage with the inlet port of the specimen pressurized to 6000 psig, specimen closed, and the outlet port vented. Leakage shall be recorded.
4.1.3	The opening, closing, and normal running torque of the valve shall be determined with the inlet port pressurized to 6000 psig and then relieved to zero psig. Record all data.
4.1.L	The procedure described in 4.1.1 and 4.1.2 each shall be repeated once for the initial functional test and performed once for all subsequent functional tests. Procedures described in 4.1.3 shall be performed ten times initially and three times for all subsequent functional tests.
4.2	TEST PROCEDURE
42.1	The test setup was assembled as shown in figure 4-1 and 4-2 using the equipment listed in table 4-1 except for thermocouple 17 and thermal chamber 18. All hand valves were closed. Flex hose 20 (port A) was connected to the outlet port of the specimen and flex hose 21 (port B) was connected to the inlet port.
4.2.2	The hand wheel of the test specimen was replaced with torque wrench 13 and the test specimen was closed using the maximum seating torque of 10 inch-pounds.
b.2.3	Regulators 6 and 15 were adjusted for zero outlet pressure.
4.2.4	Hand valve 3 was slowly opened, and gage 5 indicated 7000 psig.
4.2.5	Regulator 6 was adjusted to establish 6000 psig, as indicated on pressure gage 7.
4.2.6	Hand valve 10 was opened to determine the amount of leakage by the displacement of water in graduated cylinder 11.
k.2.7	Regulator 6 was adjusted for zero outlet pressure and hand valve 8 was opened to vent the specimen.

Hand valves 8 and 10 were closed. 4.2.8 4.2.9 Flex hose 20 (port A) was connected to the inlet port of the specimen and flex hose 21 (port B) was connected to the outlet port • The procedures described in 4.2.5 through 4.2.8 were repeated, 4.2.10 By adjusting regulator 6, the specimen pressure, as indicated 4.2.11 on pressure gage 7, was slowly increased to 6000 psig, The breakaway torque of the specimen was measured by slowly 4.2.12 applying the maximum torque required to unseat the specimen. 4.2.13 After the breakaway torque was measured, the specimen was completely opened. The running torque required from breakaway until. the specimen fully opened, was measured. The specimen was closed and the closing running torque was 4.2.14 measured. Hand valve 9 was opened and closed to vent the outlet pressure 4.2.15 of the specimen. Hand valve 10 was opened. 4.2.16 The specimen was slowly opened until bubbles appeared in water tank 12. The specimen was slowly closed and the torque required to stop 4.2.17 the bubbles in water tank 12 was measured. This was the closing torque for the specimen at operating pressure. Regulator 6 and hand valve 10 were closed. 4.2.18 4.2.19 Hand valves 8 and 9 were opened and closed to vent the specimen. The procedures described in 4.2.12 through 4.2.14 were repeated 4.2.20 to determine breakaway and running torque values for the unpressurized specimen. Flex hose 20 (port A) was disconnected and capped, and flex hose 4.2.21 19 (port C) was connected to the inlet port of the specimen, Regulator 6 was adjusted to establish 100 psig on pressure gage 4.2.22 7. 4.2.23 Hand valve 14 was opened. 4.2.24 Regulator 15 was slowly adjusted, establishing a 2-psig reading on pressure gage 16. 4.2.25 Hand valve 10 was opened. 4.2.26 The test specimen was slowly opened until bubbles appeared in water tank 12.

The test specimen was slowly closed and the torque required 4.2.27 to stop the bubbles was measured. This was the closing torque for the specimen when it was essentially unpressurized. 4.2.28 Regulators 6 and 15 were closed and hand valve 8 was opened to vent the supply pressure. 4.2.29 Hand valves **8**, 10 and **14** were closed. Flex hose 19 (port C) was disconnected and port A of flex hose 4.2.30 20 was uncapped and connected to the inlet of the specimen. The test specimen was closed using the maximum seating torque 4.2.31 of 10 inch-pounds. 4.2.32 The procedures described in 4.2.11 through 4.2.31 were performed ten Limes and the procedures described in 4.2.1 through 4.2.10 were repeated once for the initial functional test. 4.2.33 For all subsequent tests, the procedures described in 4.2.11 through 4.2.30 were performed three times and 4.2.1 through 4.2.10 once. 4.3 TEST RESULTS The test specimen functioned satisfactorily during the initial functional test. 4.4 TEST DATA

Initial functional test data are presented in table 4-2.

4-3

Table 4-1. Functional Test Equipment List

Item No.	Item	Manufacturer	Model/ Part No.	Serial No.	Remarks
1			BR949T1- 6BB (T9)	60100412	Angle Valve, 3/8 inch
2	He Source	CCSD	NA	NA	7000-psig
3		Combination Pump and Valve Co.	380-3	NA	l≟-in.
4	Filter	Microporous	.813F-2M	NA	2-micron
5	Pressure Gage	Heise	₊ 9479		0-to 10,000-psig ±0.2% FS Cal. date 10-15-66
6	Pressure Regulator	Tescom Corp.	26–1002	1002	7000-psig inlet 0-to 7000-psig outlet
7	Pressure Gage	lis hcroft	1057S		0-to 10,000-psig +0.25% FS Cal. date 11-25-66
8	Hand Valve	Robbins Aviation	SSKG-250- 4T	NA	1 -in.
9	Hand Valve	Robbins Aviation	SSKG-250- .T	NA	뉴-in.
10	Hand Valve	Flobbins Aviation	5 SKG-250- 4T	NA	t-in.
11	Graduated Cylin- der	Pyrex Co.	NA	NA	For leakage measurement
12	Water Tank	CCSD	NA	NA	Leakage detector
13	Torque Wrench	<i>I</i> Lrmstrong	5R-100	NASA 95- 1318B	Replaces hand wheel of specimen (when required) Cal. date 8-7-66
14	Hand Valve	Robbins Aviation	sskg-250- .T	NA	t-in.

Table 4-1. Functional Test Equipment List (Continued)

Item No.	Item	Manufacturer	Model/ Part No.	Serial No.	Remarks
15	Fressure Regulater	l'escom Corp.	26 -1002	1009	100-psig inlet 0-to 10-psig outlet
:16	Pressure Gage	Marsh Instrument	NA	NASA 08- 113-11421	0-to 30-psig +0.5% FS Cal. date 10-15-66
17	Thermocouple	Honeywell Corp.	30112	NA	-50 to 200 (±2.5) °F (temperature tests only)
18	Thermal Chamber	Conrad Corp.	NA	NASA 08- 113-2049- 41	-30 to 180°F (temperature tests only)
19	Flex Hose	NA	A''A	NA	दे⊹-in.
20	Flex Hose	NA	NIA	NA	l -in.
21	Flex Hose	'N A	MA	NA	1 Z , -in.

Table 4-2. Initial Functional Test Data

	8	0 gred	O POLITA CONTRACTOR DE LA		90.0	90.0	0.08	0.08	90.0	0.08	0.07	0.08	0.08	90.0			
ft-1b	To Close	0009 0009		• conseilence	1.1	1.1	0,1	1,3	7.4	1.4	1,5	1.5	1.5	1.4			
Torque	1 1	gred 0009			80.0	80.0	80.0	0.08	0.08	90.0	80.0	90.0	80.0	90.0		<u>, digita Tarania and a</u>	1
Running		97sd 0009	goods class a describe de sen		1.2	1.2	1.2.	1.3	٦ ٦	r.3	1.2	1.3	1.0	٦.	<u> </u>	· · · · · · · · · · · · · · · · · · ·	-
		psig 0			70.0	90.0	0.08	0.07	0.07	0.07	0.07	0.04	70.0	0.04		· ·	
Reseating	Torque ft-1b	97sd 9000	, , , , , , , , , , , , , , , , , , , 	***************************************	6.0	6.0	6.0	6.0	6.0	6.0	1.2	8.0	7.0	7.0		1.	1,
		0 Bied			9.9	9.9	9.9	6.5	5.9	5.9	5.9	5.0	5.0	5.0			
Breakaway	Torque ft-1b				6.7	5.8	<i>L</i> *9	6.9	9.9	6.7	6.5	5.0	5.0	5.0			
	Port Pressurized	External Leakage scim	0	MR.	M	NR	NR	NA.	MR	æ	M	E	EN .	Ħ		•	
	Outlet Port Pr	Internal Leakage scim	0	NR.	NR	a	MR	M	N.	EN.	AN.	NR.	æ	NA.			
	Inlet Port Pressurized	External Leakage scim	æ	0	Æ	, NB	NR	NR	M	R	E E	æ	AN.	NR.			4
	Inlet Port	Applied To Seating To Seating Seating Seating Seakage Seakage	NA.	0	, EN	NB	NA.	ME	NR	NR	NR	R	NR	NR.			
	rdne	bəilqqA oT gaitas; q d[-i]	5.0	5.0	10.01	10.0	10.01	10.0	10.0	10.0	10.01	10.0	10.0	10.0			
	Cycle No.		-			N	W	-7	~	9	~	∞	6	97			de la companya de la

NR N Required

Note All lines 1/4 inch. Refer to table 4-1 for item identification.

Figure 4-1 Functional Test Schematic

4-8

SECTION V

FLOW TEST

5.1	TEST REQUIREMENTS
5.1.1	The valve capacity (Cv) of the specimen shall be determined,
5.1.2	A flow rate versus pressure drop curve shall be developed.
5.2	TEST PROCEDURE
5.2.1	The test setup was assembled as shown in figure 5-2 and 5-3 utilizing the equipment listed in table 5-1. All hand valves were closed,
5.2.2	Reservoir vent valve 11 was opened. Hand valve 14 was opened and reservoir 10 was filled to approximately 75 percent of its capacity,
5.2.3	Hand valves 11 and 14 were closed.
5.2.4	Hand valve 3 was opened and regulator 6 was adjusted so that 50 psig pressure was applied to the reservoir. The pressure was monitored on gage 16.
5.2.5	Valves 17 and 18 were adjusted so that flow rates of 0.5 through 3.2 gallons per minute were attained as indicated by flowmeter 19. The pressure drop across the valve and the pipe loss were read on gages 23 and 24 and were recorded. The water temperature as indicated by temperature recorder 22 was recorded.
5.2.6	For each data point, Cv was computed for the specimen by using the following formula:
	Cv=QV PAP
	where: Q = measured flow rate (gpm) A P = pressure drop across the specimen (psi) P += density of the water at temperature indicated by thermocouple 21 P = density of water at 48°F
5.3	TEST RESULTS
5.3.1	The flow coefficient (Cv) of the 3/8 inch angle valve was an average of 0.42 when calculated over a flow range between 0.50 and 3.2 gallons water per minute.

5.3.2 The specimen showed no deterioration following the test.

5.4 <u>TEST DATA</u>

The test data recorded during the test and a functional following the test are presented in tables 5-2 and 5-3. Flow rate versus pressure drop is presented in figure 5-1.

Table 5-1. Flow Test Equipment List

Item No.	Item	Manufacturer	Model/ Part No.	Serial	Remarks
1	Test Specimen	James, Pond, & Clark, Inc.	BR949T1- 6BB(T9)	60100412	Angle Valve 3/8- In.
2	Air Supply		NA	NA	3 to 3000 psig
3	Hand Valve	Combination Pump & Valve Corp.	PL-63	NA	1/2-in.
4	Filter	Bendix	1731261	NA	10-micron
5	Pressure Gage	Ashcroft	NA	95-1210-1	0-5000 psig Cal. date 11/10/66
6	Regulator	Tescom	261201-14	NA	0-4000 psig
7	Pressure Gage	A shcroft	NA	95-1227-1	0-5000 psig Cal. date 10/3/66
8	Relief Valve	Anderson Green-	3TS44-2	16057	1500 psig
9	Check Valve	Crissair	205758	NA	3/4-in
10	Water Tank	CCSD	NA	10571	666 gal,
11	Hand Valve	Marsh Instrument	1924	NA	3/4-in.
12	Check Valve	Crissair	205758	NA	3/4-in.
13	Relief Valve	Anderson Green-wood	3TS44-2	15734	loo psig
14	Wand Valve	Jenkins Bros	46U	NA	1/2-in.
15	Wa ter Supply	NOPSI	NA .	NA	
16	Pressure Gage	Ashcroft	1850	9501581B	0-3000 psig +.5% FS Cal. date
17	Hand Valve	Vacco	MV6P4G32G	5116-18	9/13/66 1/2-in.
18	Hand Valve	Vacco	NVA6P404S	19-90794	:1 –in,
19	Flowmeter	Cox Instrument	5262	019165	0.25 to 7.5 GPM Cal. date 11/10/6
20	Eputmeter	Beckman	5311	016578	Cal.date 9/23/66.

Table 5-1. Flow Test Equipment List Continued

Item No	It em	Manufacturer	Model/ Part No.	Serial No.	Remarks
21	Temperature Probe	Honeywell	2T2M13P	NA	Copper/Constan- tan
22	Temperature Re- corder	Westmeter	NA.	019464	-100 to +400 Cal. date 7/20/66
23	Pressure Gage	Heise	NA.	93-1066-0	0-100 psig ±.1% FS Cal. date 12-14-66
24	Pressure Gage	Heise		93-1083-0	0=100 psig ±.1% FS Cal. date 12-14-66
25	Hand Valve	Vacco	NV-6P-203 2G	- 2777	1/2-in.

Table 5-2. Data on Functional Test Prior to Flow Test (72 hours lapse time)

986	barg O			0.2	0.2	0.2	
e ft-lb To Close	0000 Bieq			1.8	1.7	1.8	
g Torque	0 Bieq			0.2	0.5	0.1	•
Running To Open	97sd 0009			٦,	8.0	0.9	
ing e b	Day g			0.5	0.2	, 0	
Reseating Torque ft-lh	97sd 0009			1.6	1.5	1.5	
ray e	Daig			0.3	0.2	0.2	
Breakaway Torque	0009 Birsq			9.0	8.0	8.0	•
ressurized	External Leakage scim	0	NR	NR	NR	NR	
Outlet Port Pressurized	Internal Leakage scim	0	M.	NR.	NR	NR	
Inlet Port Pressurized	External Leakage scim	NR	0	NR	NR	NR	
Inlot Port	Applied Internal Applied Scin	Æ	0	NR	NÆ	AN.	•
ənb.	bəilqqA Sesting Tor dl-il	0.3	0.3	0,3	0.3	0.3	
Cycle					α	m	

NR - Not Required

Table 5-3. Flow Test Data

Flow	Specimen Upstream	Downstream	Tare (psi)	$\sum_{(psi)}$	Media Temperature	Flow Coefficient
(gpm)	(psig)	(psig)	en .		(°F)	(O _F)
0.50	2,5	0.9	0.1	1.5	50	0.40
0.75	5.7	2.1	0.1	3.5	50	0.40
0.90	8.3	3.1	0.2	5.0	50	0.40
1,00	10.1	3.9	0.4	5.8	50	0.42
1.25	15.2	5.9	0.4	8.9	50	0.42
1.50	21.8	8.4	0.5	12.9	50	0.43
1.75	28.7	11.1	0.7	16.9	50	0.43
2.00	37. 7	14.5	0.9	22.3	50	• 0.42
2.50	57.7	21.8	1.2	34.7	50	0.42
3.∞	83.0	31.3	1.8	49.9	50	0.42
3.20	95 .0	35.8	2.0	57.2	50	0.42
3.20	94.5	35.7	2.0	56.8	50	0.42
3.00	82.7	31.3	1.8	49.6	50 :	0.42
2.50	57.7	21.9	1.3	34.5	50	0.42
2.00	37.3	14.2	0.9	22.2	50	0.42
1.75	28.9	11.0	0.7	17.2	50	0.42
1.50	21.4	8.1	0.5	12.8	50	0.43
1.25	14.9	5.7	0.3	8.9	50	0.42
1.00	9 e9	3.7	0.2	6.0	50	0.41
0.75	5.8	2.3	0.1	3.4	50	0.41
0.50	2.8	1.2	0.1	1.5	50 [.]	0.40
Baria			<u> </u>			

Figure 5-1. Flow Versus Differential Pressure

ote: All lines l inch unloss otherwise indicated.
Refer to table 5-1 for item identification.

Figure 5-2. Flow Test Schematic

SECTION VI

SURGE TEST

6.1	TEST REQUIREMENTS
6.1.1	The test specimen shall be subjected to 20 pressure surges, 10 with the specimen closed and 10 with the specimen partially opened. The surge test determines whether the environment causes degradation or deformation of the specimen.
6.1.2	Each pressure surge shall be a pressure increase from zero to 6000 psig within 100 milliseconds.
6.1.3	The downstream side of the specimen shall be vented after each surge, when specimen is partially opened.
6.2	TEST PROCEDURE
6.2.1	?he test specimen was installed in the test setup as shown in figures 6-2 and 6-3 using the equipment listed in table 6-1. All hand valves, regulators and the specimen were closed for zero pressure.
6.2.2	Hand valve 2 was opened.
6.2.3	Pressure gage 4 indicated the supply pressure of 7000 psig.
6.2.4	Regulator 5 was adjusted until gage 6 showed 6000 psig supplied to the test setup. Hand valve 7 was opened.
6.2.5	Switch 18 was closed and solenoid valve 8 supplied 6000 psig to the inlet port of the specimen.
6.2.6	The output from pressure transducer 15 was recorded on oscillograph 16 together with the time for each run.
6.2.7	Switch 18 was opened to deactuate solenoid valve 8.
6.2.8	Procedures 6.2.5 through 6.2.7 were repeated 10 times.
6.2.9	The test sample was partially opened (cracked), and the vent port of solenoid valve 8 was capped.
6.2.10	Procedures 6.2.5 through 6.2.7 were repeated for 10 additional cycles, opening hand valve 12 after each cycle to vent the downstream pressure from the specimen.
6.2.11	The specimen was examined for distortion after each cycle and functionally tested prior to and after surge testing.

I

6.3 TEST RESULTS

6.3.1 The specimen was cycled ten times in the closed position with a pressure of 0 to 6000 psig and a rise rate of 75 milliseconds. The second ten cycles were performed with the valve in the partically opened position, cracked, with a 0 to 6000 psig pressure and a rise rate of 80 milliseconds. The specimen demonstrated no adverse effects from the test.

6.4 <u>TEST_DATA</u>

- 6.4.1 A typical surge waveform as recorded during the test is shown in figure 6-1.
- Data recorded during the pre-surge and post-surge functional tests are presented in tables 6-2 and 6-3.

Table 6-1. Surge and Cycle Test Equipment List

Item No.	Item	Manufacturer	Model/ Part No.	Serial No.	Remarks
1	Test Specimen	James Pond & Clar	c BR949T1- 6BB(T9)	6010042	Angle Valve, 3/8-in.
2	Hand Valve	Combination Pump and Valve Company	380-3	N/A	i 1/2-in. supply
3	Filter	Microporous	4813F- <i>2</i> M	N/A	2-micron
4	Pressure Gage	Ashcroft	n/A	NASA-08- 113- 200594-P	O'to 10,000 psig +0.2% FS Cal. date 12/8/6
5	Pressure Regulator	Tescom Corp,	26-1002	1004	7000 psig Inlet, O to 7000 'psig outlet
6	Pressure Gage	Ashcroft	n/a	NASA-08- 113-200 594-Q	0 to 10,000 psig 0.2%FS Cal. date 12/8/66
7	Hand Valve	Robbins Aviation	SSKG-250- 4T	n/a	1/4-in.
8	Solenoid Valve	Marotta Valve Co.	MV-583	3696	3-Way, 1/2-in.
9	Hand Valve	Robbins Aviation	SSKG- 250-4T	N/A	1/4-in.
10	Pressure Gage	Ashcroft '	N/A	NASA- 08-113 -200594 -B	0 to 10,00 0.2% FS Cal. date 12/8/66
11	Helium and Nitro- gen Source	CCSD	N/A	n/a	7000 psig.
12	Hand Valve	Robbin Aviation	S5KG-250- 4T	N/A	1/4-in.
13	Solenoid Valve	Marotta Valve Co.	MV-583	2916	3-way, 1/2-in.
14	Motor and Gear	Westinghouse	n/a	N/A	System Constructed by NASA

Table 6-1. (continued)

Item No.	Item	Manufacturer	Model/ Part No.	Serial No.	Remarks
15	Pressure Trans- ducer	Statham	12210	106–1111 B	- 0 to 7,500 psig, +0.2% Cal, date 10/4/66
16	Oscillograph Recorder	C.E.Ċ.	5-124	NASA- 017887	Recording Cal.date 12/19/66
17	Electrical , Supply	Plant Services	N/A	N/A	28 vdc and 115 vac
18	Switch	Cutler-Hammer	N/A	N/A	SPST
		٨			
					* + <u> </u>
					•

Table 6-2. Data on Functional Test Prior to Surge Test (72 Hours Lapse Time)

	980	0 Şieq		e e e e e e e e e e e e e e e e e e e	90.0	90.0	0.08	en e	- Pilleri dipandi		, , , , , , , , , , , , , , , , , , , 		,,;, , , , , , , , , , , , , , , , , , 		
	To Close	0009 giaq		7	1.8	2,1	2.1		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1						
g Torque	c	0 gieq		jim ili pilanji and	90.0	0.08	80.0	•			P T Mari pl ánagu				
Running	To Open	97sd 97sd			1.5	1.5	1.7							 	
ing e	م	0 Bied			90.0	90.0	90.0							langa ya salas a	
Reseating Torque	ft-1b	0009 37sd			6.0	6.0	1.0							•	ï
ray		0 Bieq			d d	ď	d d								
Breakaway Torque	ft-1b	0009 3red			9.0	9.0	2.0	4		, 111 in 1	, , , , , , , , , , , , , , , , , , ,				
	Pressurized	External Leakage scim	0	NR.	NR	NR	NR			-		*			
6	Outlet Port 1	Internal Leakage scim	0	NR	NR	NR	NR							1	
	Inlet Port Pressurized	External Leakage scim	NR	0	NR	NR.	NR	•							
	Inlet Port	edf first Internal April Leakage Seff scim	NR.	0	NR	NR.	NR					The state of the s			•
ant	orc	bəilqqA T yni taə2 dl-tî	0.3	0.3	0.3	0.3	0.3	•			·		· · · · · · · · · · · · · · · · · · ·		
Сусье	o N	-	Н		· · · · · · · · · · · · · · · · · · ·	73	8				····		*•		

NR - Not Required

Tablo 6-3. Data on Functional Test Following the Surge Test

		gied	**************************************	***************************************	_+		<u> </u>	****	 		 			 	 	7
	ose	0	·	10	0.04	70.0	90.0		 				·			
Running Torque ft-lb	To Close	0009 Steq		•	1.8	1,8	1.9								-	
g Torqu	u	0 Bieq			90.0	0.04	90.0	•		Ź						
Runnin	To Open	975d 975d			1.3	1.2	1.6					-				
ing	<u>م</u> ه	0 Biteq			N 0	0.2	0.2	-								
Reseating	Torque ft-1b	0009 3ieq			1.1	1,1	1.1						,		 · · · · · ·	•
ay		0 gieq			0.3	0.2	0.2								 ·	
Breakaway	Torque ft-1b	0009 Sted			9.0	6.0	6.0	••								
	Pressurized	External Leakage scim	0	NR	NR	NR	NR						•		•	
	Outlet Port	Internal Leakage scim	0	NR	NE	NR	NR		*							
	Inlet Port Pressurized	External Leakage scim	NR	0	NR	NR.	NR									
-	Inlet Port	e w Internal	NR	0	NR	NR	NR									•
Э	nb.rc	beilqqA T gatised d[-11	0.3	0.3	0.3	0.3	0.3								 	
9(30)	No.	•	,r-1			α	М							••	-	

NR - Not Required

Figure 6-1. Typical Surge Waveform

Note: All lines ½-Inch Refer to Table 6-1 for item identification

Digure 6-2. Surge and Life Cycle Test Schematic

6-9

SECTION VII

LOW TEMPERATURE TEST

7.1	TEST REQUIREMENTS
7.1.1.	The test specimen shall be subjected to a low temperature test at +5 (+0,-4)°F to determine whether the environment causes degradation of deformation.
7.1.2	The test specimen shall be subjected to a functional test in accordance with section IV during the low temperature test using helium as the test medium.
7.2	TEST PROCEDURE
7.2.1	The test specimen was installed in the test setup as shown in figures 4-1, 7-1 and 7-2, using the test equipment listed in table $4-1$.
7.2.2	With thermocouple 17 affixed to the specimen the thermal chamber 18 was cooled to +5°F and the relative humidity maintained at the prescribed 60 to 90 percent.
7.2.3	Temperature stabilization was achieved and a functional test was performed.
7.2.4	The chamber was returned to ambient temperature and a second functional was performed.
7.2.5	The specimen was visually inspected within one hour after its return to ambient temperature.
7.3	TEST RESULTS
7.3.1	The specimen demonstrated no apparent adverse effects from thermal changes except for a slight increase in the low-pressure torque-values as recorded in the functional data.
7.4	TEST DATA
	The data recorded during the test are preaented in tables 6-1 and 7-2.

Table 7-1. Data on Functional Test at 5°F

1 1 1 1 1 1 1 1 1 1				-		*************		عبنسمالات			 	-							
Presenting Port Presentized Port Presentized Porque		ose				0.08	70.0	70.0											
The fort Pressurized Outlet Port Pressurized Torque for the Po	ft-1h	To OI	- 1	•	•	1.3	1.4	1.5											
The fort Pressurized Outlet Port Pressurized Torque for the Po	Toron	n Torda				80°0	70.0	0.02											
Inlet Port Pressurized Outlet Port Pressurized Torque Torque Control of the Contr	Demark	To Ope	975d			9	æ d	e d											
The Port Pressurized Outlet Port Pressurized Torque from Internal External Leakage scim scim NR	ing	e q	barg 0	· · · · · · · · · · · · · · · · · · ·	og service of the	0.08	0.2	ď					,						
Inlet Port Pressurized Outlet Port Pressurized Torque facilitate Scim Scim NR	Reseat	Torqu ft-J	0009 31eq	·		ן, ו	2.3	1.6										`.	
Inlet Port Pressurized Outlet Port Pressurized Publication O.3 NR NR NR NR NR O.3 NR NR NR NR O.4 NR NR NR O.5 NR NR NR NR O.5 NR NR NR NR O.6 NR NR NR O.6 NR NR O.7 NR NR O.8 NR NR O.9 NR NR O.9 NR O.	Act	לט מי	0			0.8	6.0	1.0								-			
O.3 NR	Dagata	Torque ft-11	97sd 0009			0.5	1.4	1.4											
Applied Fort Pressurized Applied Fort Pressurized Applinctual External Leakage Scim Scim Scim NR		ressurized	External Leakage scim	0	NR		NR	NR						•				•	
drange o o o u u u u u u u u u u u u u u u u		Outlet Port I	Internal Leakage scim	0	NR			NR											
drange o o o u u u u u u u u u u u u u u u u		Pressurized	External Leakage scim	NR	0	M	/- -												
beildqA o o o u u u seathag Torque di-fit		Inlet Port	Internal Leakage scim	NR		ij												··········	•
Cycle No.			Applied Sesting To fill	0.3	0.3	0.3	1.3	1.5	•						. 		·····	······································	
		Cycle No.	•	1			ત્ર	m		المستحيضة		<u>ن</u> و جون				•			

NR - Not Required

Table 7-2. Data on Functional Test at Ambient Conditions

		gied		,	н	Н	H	', ' 1 ,										
ام	lose	0			0.1	0.1	0.1		,	· · · · ·		i. 1ii.; 1				 	'	_
e ft-1b	To Close	0000 3ieq	v	•	2.0	1.9	1.8											
Running Torque	c	0 Bieq			0.2	0.2	0.1	•										
Running	To Open	0009 Bieq			1.3	1.4	1.2											
ing	a a	0 Brsd			0.1	0.2	1.0											
Reseating	Torque ft-1b	0009 Bieq			г .	۲ .	r. r			·			· · · · · · · · · · · · · · · · · · ·			 	٠.	,
ay		0 Daig			0.2	0.3	0.3									 ····		,
Breakaway	Torque ft-1b	97ed			0.7	0.7	2.0	••										
	Pressurized	External Leakage scim	0	NR	0	0	0					· -			•	nama vyanya teriar	a a substitution of the su	
	Outlet Port Pressurized	Internal Leakage scim	0	NR	0	0	0											
	Inlet Port Pressurized	External Leakage scim	NR	0	MR	, NR	NR									 	-	
	Inlet Port	Applied for the formal for the formal	NR	0	NR	NR.	. NR	<u></u>						- 1		- 		· •
	anba	beitqqA oT gatises oT gatises	0.3	0.3	0.3	0.3	0.3]		
	Cycle No.		н			8										 _	·	

NR - Not REquired

7-4

7–5

SECTION VIII

HIGH TEMPERATURE TEST

8.1	TEST REQUIREMENTS
8.1.1	The test specimen shall be subjected to a high temperature test at 160 (+4,-0)°F for a period of 72 (+2,-0) hours to determine if the environment causes degradation of performance
8.1.2	The test specimen shall be subjected to a functional test in accordance with section IV during and after the high temperature test using helium as the test medium.
8.2	TEST PROCEDURE
F.2.1	The test specimen was installed in the test setup as shown in figures 4-1, 7-1 and 7-2 using the equipment listed in table 4-1.
8.2.2	With the thermocouple 17 affixed to the specimen, the temperature of the thermal chamber 18 was increased to 160°F at a rise rate of approximately 1° per minute. The humidity was maintained at 20 percent.
8.2.3	This temperature was maintained for 72 hours after temperature stabilization.
8.2.4	A functional test was performed while the sample and chamber were at 160°F.
8.2.5	The chamber temperature was returned to ambient conditions upon completion of the functional test.
8.2.6	Within one hour following the establishment of ambient conditions, a visual inspection and functional test, was performed on the specimen.
8.3	TEST RESULTS
	The test specimen demonstrated no adverse effects from the thermal change.
8.4	TEST DATA
	The data recorded during and after the test are presented in tables 8-1 and 8-2.

Table 8-1. Data on Functional Test at +160°F

1		gieq		**************************************	-	- ω	∞	
	ose	0			0.04	0.08	0.08	
Running Torque ft-lb	To Close	0009 gieq		•	1.9	2.1	2.0	
g Torqu	c	0 psig		•	0.04	90.0	0.08	•
Runnin	To Open	ратВ 9000			1.3	1.5	1.4	
ing	a e	Darg O			1.9	1.7	1.7	
Reseating	rorque ft-1b	0009 Bieq			3.9	3.9	3.6	
ray		0 Bieq			2.6	2.3	2.4	
Breakaway	Torque ft-1b	97sd 37sd			2.0	3.0	3.3	
	Pressurized	External Leakage scim	0	NR	NR	NR	NR	
	Outlet Port Pressurized	Internal Leakage scim	0	NA.	NR	NR	NR	
	Inlet Port Pressurized	External Leakage scim	NR	0	NR	NR	MR	
•	Inlet Port	e wo Internal	NR	0	NR	NR	NR	TH.
əı	orqu	beilqqA T gaitaca d[-t1	4.	-4	4	-7	4	•
Cvcle	No.		Н			Q	σ.	`.

NR - Not Required

Table 8-2. Data on Functional Test at Ambient Conditions

	Close	0 gieq			0.2	0.2	0.08	
e ft-lb	To Cl	0009 gied		,	1.7	2.0	1.7	
Running Torque ft-1b	u	0 Bieq			0 2	0.08	90.0	•
Rumin	To Open	37sd 0009			1,1	1.3	1.0	
ing	ρ [ο	0 Bisq			1.7	1.8	1.9	
Reseating	Torque ft-1b	0009 37sd			0.4	0.4	7.0	12
мау	o .c	0 Bieq			2.9	1.3	1,3	
Breakaway	Torque ft-1b	0009 3isq			3.3	2.7	3.4	
	ressurized	External Leakage scim	0	NR	NR	NR	NR	•
	Outlet Port Pressurized	Internal Leakage scim	0	NR	NR	MR	NR	
	Inlet Port Pressurized	External Leakage scim	NR	0	MR.	بہ	MR	
	Inlet Port	d wo Internal description of the control of the con	NR	0	NR	NR.	NA EN	•
1	pao,	beilqqA Tantised dl-il	4.	7	-4	4	4	
Cycle	No.		- -1			N	6	

NR - Not Required

SECTION IX

CYCLE TEST

9.1	TEST REQUIREMENTS
9.1.1	The test specimen shall be subjected to 1000 cycles during the cycle test.
9.1.2	Each cycle shall consist of pressurizing the inlet port to 6000 psig and then opening and closing the specimen. GN ₂ shall be the test medium.
9.1.3	The specimen downstream pressure will be vented to below 3100 psig after each cycle,
9.1.4	A functional test, as specified in section IV, shall he Ferformed following the completion of 50, 100, 500 and 1000 cycles.
Q.2	TEST PROCEDURE
9.2.1	The specimen was installed in the test setup as shown in figures 6-2 and 6-3 utilizing the equipment listed in table 6-1.
9.2.2	All. hand valves and regulator 5 were adjusted for zero pressure.
9.2.3	Hand valve 2 was opened and gage 4 was monitored for a 7000 psig reading. Hand valve 9 was opened.
9.2.4	Regulator 5 was adjusted to establish a 6000 psig reading on gage 6 and hand valve 7 was opened.
9.2.5	The electrical network was adjusted to produce the following:
	a. Solenoid valve 8 was actuated to pressurize the specimen to 6000 psig, read from gage 6.
	b. Solenoid valve 13 was actuated to close the outlet port during specimen opening and closing. Hand valve 12 was partially opened.
	c. Switch 18 was closed to signal the 440 vac reversible electrical motor 14 to open and close the specimen.
	d. Solenoid valves 8 and 13 were deactuated to vent pressure from the specimen to below 3100 psig downstream, read from gage 10.

9.2.6 Functional tests were performed after 50, 100, 500 and 1000 cycles of the specimen.

9.3 TEST RESULTS

- 9.3.1 After 143 cycles, the torque required to operate the valve exceeded the 10 foot-pounds seating and the 5 foot-pounds running torque, Disassembly of the valve revealed that the threads of the valve stem and also the packing gland had failed by excessive wear.
- 9.3.2 The specimen was rebuilt by the vendor and returned. A complete functional test was performed before cycle testing was continued.
- 9.3.3 The rebuilt specimen performed satisfactorily during and after 1000 cycles of operation.

9.4 TEST DATA

- 9.4.1 Functional test data after 50 and 100 cycles are shown in tables 9-1 and 9-2.
- 9.4.2 Complete functional test data after the valve was rebuilt by the vendor and functional test data following 50, 100, 500 and 1000 cycles are shown in tables 9-3 through 9-7.
- 9.4.3 Figure 9-1 shows actual damage to the specimen after 143 cycles.

Table 9-1. Data on Functional Test After 50 Cycles

				-		- حصاب حجاز بند		
	ose	0 gieq			7.0	7.0	7.0	
e ft-lb	To Close	0009 3ieq		•	1.9	1.8	1.6	
g Torque	u.	0 gieq			5.0	9.0	9.0	
Rumning	To Open	0009 37sd		100000 101 · 100 · 100	1.5	1.6	1.5	
ing	p se	0 Bisq			4.2	3.4	3.5	
Reseating	Torque ft-1b	0009 3teq		,	8,2	7.9	8.6	•
мау	ع ہ	0 Bieq			5.8	5.0	5.4	
Breakaway	Torque ft-1b	0009 3isq		- AGEGGGE CANADA	5.8	5.8	5.4	•
	Pressurized	External Leakage scim	0	NR	NR	MR	NR	
	Outlet Port P	Internal Leakage scim	0	NR	NR.	NR	NR	
	Inlet Port Pressurized	External Leakage scim	NR	0	NR.	NR	NR	
	Inlet Port	o wo Internal	NR	•	NR	NR	E	•
1	ordn	bəilqqA T gattaəd d[-11	8.3.	8.3	8,3	8.2	8.2	
Cvcle	No.		Н			~	~	••
1	···· 7 *		j.					•

N N quir

9-2. Data on Functional Test After 100 Cycles

1		1			The stranger of the stranger o	a transportation of the second		
	Close	0 gieq	· N. I. A	Majda kalima da karawa ka	7.0	0.3	9.0	
e ft-lb	To Cl	6000 gieq			2.3	2.3	1.8	
Torque	c	0 psig			0.5	7.0	0.7	
Running	To Open	0009 Bred			2.0	2.0	1.7	ø
ing e	۵	0 Bied			2.7	1.8	1.9	
Reseating Torque	rt-1b	0009 3ieq			7.9	5.4	5.4	offt-lbs runn valve stem and ilding.
ay		0 Bieq			5.0	3.4	4.2	and rebu
Breakaway	ft-1b	97sd			5.8	5.4	9.4	rating Threads of the direction of the d
	ressurized	External Leakage scim	0	NR	NR	NR	NR	ed 10 ft-11 8 cycles. gland requ
	Outlet Port Pressurized	Internal Leakage scim	0	MR	NR	NR	M	Specimen exceeded 10 ft-lbs.
, , , , , , , , , , , , , , , , , , ,	Inlet Port Pressurized	External Leakage scim	NR	0	NR	E	NR	Note:
	Inlet Port	e w Internal intrology put Leakage Apat scim	NR	0	M	NE	NR.	•
	ord	bəilqqA T gattaəd dl-tî	8.3.	8.3	8.3	7.5	5.0	
Cycle	No.		Ţ	· · · · · · · · · · · · · · · · · · ·		сι	ı m	

NR - Not Required

Table 9-3. Data on Functional Test After Specimen was Rebuilt

İ		gied			_+	_+	_+	_+	_+	<u></u>	<u>_</u>			- 	 -		7
	036	0	······································		0.04	0.04	70°0	0.0	0.04	0.04	0.04	70.0	70.0	0.04			
Torque ft-lb	To Close	0009 gred	4		1.5	1.5	1.5	1.6	1.6	1.6	1.6	1.6	1.5	1.5			
, ,	u	O psig			70°0	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	70.0			
Runring	To Open	975d 975d			1,3	1.3	1.0	1.3	1.4	1.4	1.4	1.3	1.4	1.4			
ing	p e	0 Bieq			1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	7		
Reseating	Torque ft-1b	0009 Bied			2.5	2.5	2.5	2.5	2.5	2.1	2.5	2,1	2.1	2.1		٠.	
ray		0 Bieq			9.0	0.8	. &	8.0	8.0	8.0	9.0	8.0	0.8	0.8			
Breakaway	Torque ft-1b	975d			2,1	1.7	1.7	1.7	1.7	1.7	1.5	1.7	1.5	1.5			
	Port Pressurized	External Leakage scim	0	NR	NR	NR	NR	NR	NR	NR	NR	NR	· NR	Ř			
	Outlet Port F	Internal Leakage scim	0	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	N.			
	Inlet Port Pressurized	External Leakage scim	NR	0	NH.	. NR	NR	NR	NR	NR	AN.	AN.	æ	NR			
	Inlet Port	d To The Scim scim	NR	0	MR	NR	Ma	æ	NR	Æ	NR	NR	NR	NR			•
ə	nbac	bəilqqA of gattasə dl-ff	3.4.	3.4	3.4			•									
0,000	No.	· ·	r-4		· · · · · · · · · · · · · · · · · · ·	~	m	-4	κ.	9	2	80	6	97		and the second	
<u> </u>			<u> </u>												-		·*****

N

H

Table 9-4. Data on Functional Test After 50 Cycles (Rebuilt Valve)

	980	0 grad		4	0.0	0.0	0.0											
e ft-lb	To Close	6000		•	1.5	1.5	1.5											
g Torque	u	0 psig			0.0	0.0	0.0											
Ruming	To Open	0009 Bigg			0.1	6.0	1.0								A.			
ing	م و	barg O			1.7	1.7	1.7		· ·			, a						
Reseating	Torque ft-1b	0009 Bieq		**************************************	2.5	2.5	2.5							,			'n.];
чау	0) (0 Bieq			1.0	1.3	1.3			÷ .							,	
Breakaway	Torque ft-1b	0009 312q			2.3	1.8	1,8	.,					·					
	Port Pressurized	External Leakage scim	0	NR	NR	NR	NR											
	Outlet Port 1	Internal Leakage scim	0	NR	NR	NR	NR											
	Inlet Port Pres srized	External Leakage scim	NR	0	NR.	NR	EN		·····									
	Inlet Port	Appliance of the second of the	NR.	0	NR	NŘ	NR	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			· ·	-		•
9	nbac	Applied Seating To ft-lb	2.5.	2.5	2.5	2.5	2.5	•										
2	Cycle No.		Н			R	~		••••••••••••••••••••••••••••••••••••••									

NR - Not Required

Table 9-5. Data on Functional Test After 100 Cycles (Rebuilt Valve)

	Close	0 3teq			0.0	0.0	0.0	. 4				· · · · · · · · · · · · · · · · · · ·					
F.	To Co	0009 gied			1.3	1.3	7°7									:	
Running Torque	u,	0 gieq			0.0	0.0	0.0	•				-					
Rumir	To Open	0009 Bied			8.0	8.0	0.8										
ing 1e	q.	Day C			1.7	1.7	1.7										
Reseating Torque	ft-1b	97sq			2.5	2.5	2.5					7				٠,	
vay s		0 Jrsd			7.4	1.4	1.4					-			***************************************		
Breakaway Torque	ft-1b	97sd 0009			2.5	2.1	2.1						***************************************			-	
1	ressurzed	External Leakage scim	0	NR	NR	NR	NR						•				
1 + C	Oriet Fort Fressurized	Internal Leakage scim	0	NR.	. NR	. NR	NR				. ,			·	<u> </u>		
	INIMA FOR FRESSURIZM	External Leakage scim	NR	0	NR	NR	NR										
- H	Inlet Fort	d T e go Internal pttlleakage Seet scim	NR	0	NR	nr.	NR						-		1 :		•
anb	.JO,	bəilqqA T gattasəd dl-tî	2.5.	2.5	2.5	2.5	2.5										-
Cycle	• •		Н			73	n						!-,				

NR - Not Required

Table 9-6. Data on Functional Test After 800 Cychs (Rebuilt Valve)

	ose	0 Baig			0.0	0.0	0.0						 -			
Torque ft-1b	To Close	0009 Bieq		•	1.8	1.7	1.8				•					
		0 psig			0.0	0.0	<i>o</i> .		-							
Running	To Open	0009 gied			1.2	7.7	1.4									
ing	മെ	0 Biteq			1.7	1.7	1.7									
Reseating	Torque ft-1b	975d 9000			2.5	2.5	2.1	,				· · · · · · · · · · · · · · · · · · ·		· ·	•	
ray	<i>a</i> v. 0	Daig 0			8.0	1.0	8.0		 							
Breakaway	Torque ft-1b	0009 37sd		-	1.8	1.7	1.7	.4#		,						
	ressurized	External Leakage scim	0	邕	RE	NR.	NR				-	2 12 14 14 14 14 14 14 14 14 14 14 14 14 14				
,	Outlet Port Pressurized	Internal Leakage scim	0	NR	NR	NR	NR									
	Inlet Port Pressurized	External Leakage scim	MR	0	NR	NR	NR	:•								
	Inlet Port	d for the constant of the cons	NR	o	NR	NR	NR				4					•
1	enba	Applied Seating To ft-lb	2.5.	2.5	2.5	2.5	2.5	•	 —							
	Cyole No.		٦			Q	m									

NR - Not Required

Table 9-7. Data on Functional Test After 1000 Cycle (Rebuilt Valve)

ſ	· ·	1			-		وبنوسوس													
		036	0 gieq			90.0	0.10	90.0												
	e ft-1b	To Close	0009 Sieq		•	1.8	1.7	1.7		4				*************************************			***	- 		
	Running Torque ft-1b	п П	0 gieq			0.3	. 6.0	0.3	•							- (····		
	Runnin	To Open	0009 3rad			7,2	1.3	1.5	<u> Airennesse</u>					- p. ().			,		 i	
	ing	a a	0 Brad			1.7	1.7	1.7				2	- 				Militaria Perintengania	-		
	Reseating	ft-1p	0009 Bisq			3.3	2.5	3,3	**************************************		- 1						•		ί.	•
	ray		0 Daig			2.1	1.7	1.7		***************************************				 	-					
	Breakaway	rorque ft-1b	0009 3isq			7.1	2.5	1,7	.,						· · · · ·	-		y : 		
		ressurized	External Leakage scim	0	NR	NR	NR	NR	Verdiscondences	- The second						.4				
		Outlet Port Pressurized	Internal Leakage scim	0	NR	NR	NR	NR		·					jenari.		•		 	
		Inlet Port Pressurized	External Leakage scim	NR	0	NR	NB.	MR		•								-		
	_	Inlet Port	d To the Internal party Leakage Apt Leakage Apt Scim	NR	0	MR	NR.	NR.		 			· · · · · · · · · · · · · · · · · · ·							•
		ord	bəilqqA TantasəS dl-fl	2.5.	2.5	2,5	3,3	2.5		t time i mayor	***************************************	 		· · · · · · · · · · · · · · · · · · ·		., 		*************************************		
-	Cycle	No.			·		8	8	, , , , , , , , , , , , , , , , , , , 		" 'çi .		*				••	,		
1			· · · · · · · · · · · · · · · · · · ·			·		· · · · · · · · · · · · · · · · · · ·				***************************************		,					•	

NR - Not Required

Figure 9-1. Specimen Failure After 143 Cycles

9-10

SECTION X

SAND AND DUST TEST

10.1	TEST REQUIREMENTS	
1.0.1.1	A sand and dust test shall be to determine if sand particles	be performed on the test specimen les can cause malfunction.
10.1.2	Sand and dust shall meet the 10.1.3 through 10.1.8.	e requirements as specified in
10.1.3	100 percent of the sand and mesh screen, U. S. standard	dust shall pass through a 100-sieve series.
10.1.4	98 (+2) percent of the sand mesh-screen, U. S. standard	and dust shall pass through a 140-sieve series,
10.1.5	90 (±2) percent of the sand mesh screen, U. S. standard	and dust shall pass through a 200-sieve series.
10.1.6	75 (±2) percent of the sand mesh-screen, U. S. standard	and dust shall pass through a 325-sieve series.
10.1.7	Chemical analysis of the du	st shall be as follows:
	Substance	Percent by Weight
	SiO ₂	<i>9</i> 7 to 99
	Fe ₂ O ₃	0 to 2
	Al ₂ O ₃	0 to 2
	TiO ₂	0 to 2
	MgO	O to 1
	Inorganie losses	0 to 1
10.1.8	-	aintaining the temperature at 500-cfm air velocity available
10.2	TEST PROCEDURE	
10.2.1	The inlet and outlet ports was placed in a sand and du	were capped and the test specimen st chamber.
10.2.2	The density of the sand and 0.25 gram per cubic foot.	dust was maintained at 0.1 to

The internal temperature of the test chamber was set at 10.2.3 77°F for a period of 2 hours with an air velocity through the test chamber of 100 to 500 feet per minute. 10.2.4 Immediately following the 2-hour period, the temperature was raised to 160°F and maintained for a period of 2 hours. The test specimen was removed from the test chamber after 10.2.5 the 2-hour exposure period and allowed to cool to ambient temperature. 10.2.6 The accumulated dust was removed from the specimen by carefully brushing, wiping, and shaking. The test specimen was then examined for internal sand accumulation. 10.2.7 Upon completion of the sand and dust test, a functional test was performed as specified in section IV. TEST RESULTS 10.3 The test specimen shared no deterioration or deformation after the sand and dust test. 10.4 TEST DATA 10.4.1 Functional test data recorded following the sand and dust test are presented in table 10-1.

A report on the sand and dust environment test performed

by Associated Testing Laboratories, Inc., is shown in appendix

10.4.2

Ι.

Data on Functional Test Following the Sand and Dust Test Table 10-1.

	03e	0 gieq			80°0	80.0	80.0	<u> </u>	·		+							
Torque ft-lb	To Close	0009 gieq			1.5	1.7	1.7											
7 Torqu	c	0 Bieq			80.0	90.0	0.08	_						_	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Running	To Open	975d Days			8.0	0.8	. 6.0									-		
ing	م ه	0 Bied			1.7	1.7	1.7											
Reseating	Torque ft-1b	975d 2000			2.5	2.5	2.5										-	
чау	W C	0 Daig			1.0	0.8	8.0	***					 					
Breakaway	Torque ft-1b	975d 875d			7.1	7.1	1.7											
	Pressurized	External Leakage scim	0	NR	NR	NR	NR					-	 •				. •	
	Outlet Port 1	Internal Leakage scim	0	NR	NR.	NR	NR											
	Inlet Port Pregsurized	External Leakage scim	NR	0	NR	NR	NB						 					
	Inlet Port	Applied Applied Applied Seating Seath Leakage Scim	NR	0	NR	M	NR.			B-08-0-1-1-1-1			 -					
6	rdne	bəilqqA oT gattasəd d[-11	2.5	2.5	2.5	2.5	2.5	.•								, . , ,	, , ,	
	Cycle No.		н			ત્ય	9		in-readist									

NR - Not Required

SECTION XI

SALT FOG TEST

11.1 TEST REQUIREMENTS

- 11.1.1 A salt fog test shall be performed per KSC-STD-164(D), section 17, to determine the corrosive resistance of the test specimen.
- The test shall be conducted with a temperature in the exposure zone maintained at 95 (+2, -4)°F. The salt fog conditions maintained in all parts of the exposure zone shall be such that a clean fog-collecting receptacle placed at any point in the exposure zone will collect from 0.5 to 3 milliliters of solution per hour for each 80 square centimeters of horizon-tal collecting area (10 centimeters diameter) based on an average test of at least 16 hours.
- 11.1.3 The salt used shall be sodium chloride containing, on the dry basis, not, more than 0.1 percent of sodium iodide and not more than 0.2 percent of total impurities. Unless otherwise specified, a solution shall consist of 5 parts by weight of salt in 95 parts by weight of water containing not more than 200 parts per million of total solids. The solution shall be kept free from solids by filtration or decantation. The solution shall be adjusted to and maintained at a specific gravity of from 1.023 to 1.037 and a reference temperature of 95°F. The pH of the salt solution shall be so maintained that, the solution atomized at 95 (+2, -4)°F and collected by the method specified in the 12.1.1, will be in the pH range of 6.5 to 7.2 Only diluted chemically pure (CP) hydrochloric acid or CP sodium hydroxide shall be used to adjust the pH.
- 11.1.4 The solution shall be collected by placing a minimum of two receptacles such that one is placed nearest to any nozzle and one is farthest from all nozzles. Receptacles shall be placed so that they are not shielded by the test specimen and so that, no drops of solution from the test specimen or other sources will be collected. The solution shall have the specified sodium chloride content and pH value when measured at a temperature of 95 (+2, -4)°F. The salt solution from all collection receptacles used may be combined to provide the quantity required for the measurements Specified. A laboratory type hydrometer is acceptable for measurement of specific gravity, The pH measurement shall be made electrometrically using a glass electrode with a saturated potassium chloride bridge or by a colorimetric method such as bromothymol blue, provided the results are equivalent to those obtained with the electrometric method. The pH shall be measured when preparing each new batch of solution. The measurement of both sodium chloride and pH shall be made following each test for salt fog chambers in continuous use.

- The test chamber and all accessories shall be made of material such as rubber or plastic that will not affect the corrosiveness of the fog. The chamber should be arranged so that no direct impingement of the fog or dripping of the condensate on the test specimen takes place. Liquid which comes in contact with the test specimen shall not be returned to the salt solution reservoir. The chamber shall be properly vented to prevent pressure buildup and allow uniform distribution of salt fog.
- 11.1.6 Air entering the atomizer shall have a relative humidity of 85 percent and be free of impurities such as oil and dirt.

11.2 TEST PROCEDURE

- The test specimen was visually inspected for corrosion, dirt, and oily film. All unnecessary oily films and dirt particles were removed. No corrosion spots were observed.
- The inlet and outlet ports of the test specimen were capped and the specimen was placed in the test chamber.
- 11.2.3 The test chamber was operated according to the specified operating conditions for a period of 240 hours.
- 11.2.4 At the end of the 240-hour exposure period, the test specimen was removed from the chamber and allowed to return to ambient conditions.
- 11.2.5 All salt deposits were removed and the specimen was visually inspected.

11.3 TEST RESULTS

The test specimen showed no deterioration or deformation after the salt fog test.

11.4 TEST DATA

- 11.4.1 A photograph of the test specimen after the salt fog test is presented in figure 11-1.
- 11.4.2 Functional test data recorded following the salt fog test are presented in table 11-1.

NR - Not Required

	336	0 Staq	-	Personal Incompany	0.0	0.0	0.0					Militari es comune				
	e ft-lb To Close			•	1.7	1.7	1.6		-						bankan, ayan	
	g Torque	0 gisq		teria e e e e e e e e e e e e e e e e e e e	0.0	0.0	0.0	•	- 171, N. 1 1 1	· · · · · · · · · · · · · · · · · · ·						
	Runming To Open	97sd 0009			ф. О	6.0	. 8.0									
	ring ne lb	0 gieq	•	***************************************	1.7	1.7	1.7							·		
دب	Reseating Torque ft-lb	0009 gieq			2.5	2.9	2.5								•	
Fog Tes	way e b	0 Bisq	,		1.5	1,1	1.2				_					
e Salt	Breakaway Torque ft-1b	97ed 9000			1.7	1.8	1.7	•				.1				
Test Following the Salt Fog Test	Pressurized	External Leakage scim	0	NR	NR	NR	NR.			-		•			•	
Functional Twm	Outlet Port 1	Internal Leakage scim	0	NR	NR	NR	NR									
Tabb.	Pressurized	External Leakage scim	NR	0	NR .	NR	NR	*				, , , , , , , , , , , , , , , , , , , 	, , , , , , , , , , , , , , , , , , , 			
Ħ	Inlet Por	ed To Line Leans Land Leakage Scim	NR	0	NR	NE	NR .								***************************************	•
	orque	beilqqA T Entised d[-il	2.5.	2,5	2,5	2, 7,	2.9									
	Cycle No.		Н			8	m	- in ainteile in		·			••			

Figure 11-1. Specimen Following 240 h rs of Salt Fog Exposure

SECTION XII

BURST TEST

12.1	TEST REQUIREMENTS
12.1.1	The specimen shall be subjected to a hydrostatic pressure of 24,000 psig to determine the structural integrity of the specimen.
12.1.2	The hydrostatic pressure shall be simultaneously applied to the specimen inlet and outlet ports with the valve in the open and closed positions. The pressure shall be maintained for 5 minutes.
12.2	TEST PROCEDURE
12.2.1	The test setup was assembled as shown in figure 3-1 using the equipment listed in table 3-1. All valves and the specimen were closed.
12.2.2	Regulator 21 was adjusted for zero outlet pressure.
12.2.3	Hand valves 6, 7, 8, 9, 10 and 11 were opened to fill the system with water. The fittings at gage 3 and specimen 1 were cracked as required to bleed trapped air. The fittings were then tightened.
12.2.4	Hand valves 6, 8, 9 and 11 were closed.
12.2.5	Hand valve 5 was opened. Pneumatic source pressure was 3100 psig as indicated on gage 14.
12.2.6	Regulator 21 was adjusted to establish a pressure of 75 psig as read on gage 15.
12.2.7	Switch 17 was closed to open solenoid valve 18. Pump 19 began operating.
12.2.8	Pumping was continued until specimen pressure as indicated by gage 3 was 24,000 psig. Switch 17 was opened to stop the pump.
12.2.9	The 24,000 psig pressure was maintained for 5 minutes. The specimen was then checked for leakage and distortion.
12.2.10	Hand valves 8 and 11 were opened to vent pressure from the specimen and gage.
12.2.11	The test specimen was opened. Hand valves 8 and 11 were closed.

12.2.12 Steps 12.2.7 through 12.2.10 were repeated.

12.3 <u>TEST_RESULTS</u>

The specimen satisfactorily withstood the 24,000 psig minimum burst pressure. It did not leak or show any signs of structural damage.

12.4 TEST DATA

Test data are presented in table 12-1.

Table 2-1. Burst Test Data

Specimen	Ports	Minimum Burst	Applied	Remarks
	Pressurized	Pressure	Pressure	Remarks
1	Pressurized in- let and outlet port simultane- ously with the valve opened and with the valve closed	24,000 psig	24,000 psig	No leakage or distortion

APPENDIX I

Test Report	No.	M592-7512

No of Pages 2

Report of Test on

MANUAL VALVE

SAND AND DUST TEST

for

CHRYSLER CORDODATION

Associated Testing Laboratories, Inc.

Wayne, New Jersey

Date June 15, 1967

	Prepared	Checked	Approved
Ву	L. Tabback	F. Kopec	G. Ciccone
Signed	& Tallock	F. Kopen	G Ciccone
Date	6/15/67	6-15-67	6-15-67

Administrative Data

1.0 Purpose of Test:

To subject the submitted Manual Valve to a Sand and Dust Test in accordance with the referenced specification.

2.0 Manufacturer: Chrysler Corporation

Space Division Michoud Operations New Orleans, Louisiana

Manufacturer's Type or Model No.: S/N 60100412

Drawing, Specification or Exhibit:

Specification KSC-STD-164(D) dated Sepetember 12, 1964

Quantity of Items Tested: 5.0

One

6.0 Security Classification of Items:

Unclassified

7.0 Date Test Completed:

May 31, 1967

8.0 Test Conducted By: Associated Testing Laboratories, Inc.

9.0 Disposition of Specimens:

Returned to

Chrysler Corporation

10.0 Abstract:

There was no evidence of deterioration of the Manual Valve as a result of the Sand and Dust Test.

Report NO. M592-7512

Page 1

TEST PROCEDURE

The sand and dust test was conducted in accordance with Section 16 of Specification KSC-STD-164(D).

The Valve was placed in a sand and dust test chamber. The chamber temperature was increased to and maintained at +77°F for a period of two hours. At the completion of this two-hour perfod, the chamber temperature was increased to and maintained at +160°F for an additional two-hour period. The chamber temperature was then returned to room ambient temperature.

Throughout the entire sand and dust test, the sand and dust density within the chamber was maintained between 0.1 and 0.5 gram per cubic foot and the sand and dust velocity was maintained between 100 and 500 feet per minute. The sand and dust used in the test was of an angular structure having the characteristics described in Specification KSC-STD-164(D).

At the completion of the sand and dust test, the Valve was removed from the chamber and allowed to cool to room ambient temperature. The accumulated duet was removed from the Valve by wiping and the Valve was then visually examined for evidence of deterioration.

APPARATUS

Sand and Dust Test Chamber, manufactured by Associated Testing Laboratories, Inc. (Manufacturing Division), Model SD-36-LC.

Calibration date: 3-30-67 Calibration due date: 5-30-67

TEST RESULTS

Visual examination of the Valve at the completion of the sand and duet test revealed no evidence of deterioration.

Report No. M592-7512

3

Page 2

Associated Testing Laboratories, Inc.

Wayne, New Jersey

Burlington, Massachusetts

APPROVAL

TEST REPORT

FOR

ANGLE VALVE, 3/8-INCH

James, Pond, and Clark, Inc., Part Number BR949T1-6BB(T9)

NASA Drawing Number 75M09618 PAV-2

SUBMITTED BY:

Moller

G. Collins

Test and Evaluation Section

APPROVALS:

R. W. Claunch

Program Supervisor

V. J. Vehko, Director

Engineering Department

DISTFUBUTION

Chrysler Corporation Space Division

C.	A.	Brakebill	Test and Evaluation Section	2		
R.	W.	Claunch	Program Supervisor, CCSD-Michoud	2		
W.	D.	Dempster	Program Manager, CCSD-FO	6		
E.	J.	Dofter	Chief Engineer, Reliability Engineering Branch	1		
E.	B.	Keenan	Test and Evaluation Section	5		
P.	Pe	rani	Manager, Test and Evaluation Section	2		
L.	T.	Scherer, Jr.	Manager, Data Center Section	1		
V.	J.	Vehko	Director, Engineering Department	1		
Technical Files						
Technical Information Centre						
Te	Technical Writing and Editing Group					
National Aeronautics and Space Administration						
Marshall Space Flight Center MS-IP, Bldg. 4200 APIC						
Jo	John F. Kennedy Space Center MD MG MH ML, Mr. Fedor RC-423					
P.	Scientific and Technical Information Facility P. O. Box 33 College Park, Maryland 20740					